Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 734
Filter
1.
Braz. j. biol ; 84: e252910, 2024. tab, mapas, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1360209

ABSTRACT

Bemisia tabaci is a species complex that causes damage to its broad range of plant hosts through serious feeding. It transmits plant viruses of different groups to important agricultural crops. Some important cash crops of Pakistan are sugar cane, rice, tobacco and seed oil. It shows high genetic variability and is differentiated as races or biotypes. Biotypes are, biotype Q, biotype B, biotype B2, biotype M, biotype L, biotype A, biotype H, biotype C, biotype K, biotype N, biotype R, biotype E, biotype P, biotype J, biotype S, biotype AN. Although the current report based on the Bayesian study of mitochondrial cytohrome oxidase gene1 (CO1) DNA sequences has classified the different populations of whiteflies into twelve genetic groups which are Mediterranean, Sub-Saharan Africa silverleafing, Indian Ocean, Asia II, Asia I, Australia, New World, Italy, China, Sub-Saharan Africa non-silverleafing, Mediterranean/Asia Minor/Africa and Uganda sweet potato. Begomoviruses is largest group of viruses transmitted by B. tabaci and cause major diseases of crops such as tomato and chili leaf curl disease, cassava mosaic disease; yellow mosaic disease of legumes and cotton leaf curl disease. The main objective of current study is to inculpate knowledge regarding genetic diversity of whitefly in cotton fields across Pakistan via analysis of partial DNA sequence of mitochondrial gene Cytochrom Oxidase I (mtCO1).


Bemisia tabaci é um complexo de espécies que causa danos a uma ampla gama de hospedeiros vegetais por meio de alimentação séria. Ele transmite vírus de plantas de diferentes grupos para importantes safras agrícolas. Algumas safras comerciais importantes do Paquistão são cana-de-açúcar, arroz, tabaco e óleo de semente. Apresenta alta variabilidade genética e é diferenciado em raças ou biótipos. Os biótipos são: biótipo Q, biótipo B, biótipo B2, biótipo M, biótipo L, biótipo A, biótipo H, biótipo C, biótipo K, biótipo N, biótipo R, biótipo E, biótipo P, biótipo J, biótipo S, biótipo AN . Embora o relatório atual baseado no estudo bayesiano das sequências de DNA do gene 1 da oxidase do citocromo mitocondrial (CO1) tenha classificado as diferentes populações de moscas-brancas em doze grupos genéticos, que são Mediterrâneo, África Subsaariana com folha de prata, Oceano Índico, Ásia II, Ásia I, Austrália, Novo Mundo, Itália, China, África Subsaariana sem folha prateada, Batata-doce Mediterrâneo / Ásia Menor / África e Uganda. Os begomovírus são o maior grupo de vírus transmitidos por B. tabaci e causam as principais doenças de culturas, como a doença do cacho do tomate e da pimenta-malagueta, doença do mosaico da mandioca, doença do mosaico amarelo de leguminosas e doença do enrolamento da folha do algodão. O principal objetivo do presente estudo é inculpar conhecimento sobre a diversidade genética da mosca-branca em campos de algodão em todo o Paquistão por meio da análise da sequência parcial de DNA do gene mitocondrial Citocromo Oxidase I (mtCO1).


Subject(s)
Genetic Variation , Genes, Mitochondrial , Begomovirus , Agricultural Pests
2.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469347

ABSTRACT

Abstract Bemisia tabaci is a species complex that causes damage to its broad range of plant hosts through serious feeding. It transmits plant viruses of different groups to important agricultural crops. Some important cash crops of Pakistan are sugar cane, rice, tobacco and seed oil. It shows high genetic variability and is differentiated as races or biotypes. Biotypes are, biotype Q, biotype B, biotype B2, biotype M, biotype L, biotype A, biotype H, biotype C, biotype K, biotype N, biotype R, biotype E, biotype P, biotype J, biotype S, biotype AN. Although the current report based on the Bayesian study of mitochondrial cytohrome oxidase gene1 (CO1) DNA sequences has classified the different populations of whiteflies into twelve genetic groups which are Mediterranean, Sub-Saharan Africa silverleafing, Indian Ocean, Asia II, Asia I, Australia, New World, Italy, China, Sub-Saharan Africa non-silverleafing, Mediterranean/Asia Minor/Africa and Uganda sweet potato. Begomoviruses is largest group of viruses transmitted by B. tabaci and cause major diseases of crops such as tomato and chili leaf curl disease, cassava mosaic disease; yellow mosaic disease of legumes and cotton leaf curl disease. The main objective of current study is to inculpate knowledge regarding genetic diversity of whitefly in cotton fields across Pakistan via analysis of partial DNA sequence of mitochondrial gene Cytochrom Oxidase I (mtCO1).


Resumo Bemisia tabaci é um complexo de espécies que causa danos a uma ampla gama de hospedeiros vegetais por meio de alimentação séria. Ele transmite vírus de plantas de diferentes grupos para importantes safras agrícolas. Algumas safras comerciais importantes do Paquistão são cana-de-açúcar, arroz, tabaco e óleo de semente. Apresenta alta variabilidade genética e é diferenciado em raças ou biótipos. Os biótipos são: biótipo Q, biótipo B, biótipo B2, biótipo M, biótipo L, biótipo A, biótipo H, biótipo C, biótipo K, biótipo N, biótipo R, biótipo E, biótipo P, biótipo J, biótipo S, biótipo AN . Embora o relatório atual baseado no estudo bayesiano das sequências de DNA do gene 1 da oxidase do citocromo mitocondrial (CO1) tenha classificado as diferentes populações de moscas-brancas em doze grupos genéticos, que são Mediterrâneo, África Subsaariana com folha de prata, Oceano Índico, Ásia II, Ásia I, Austrália, Novo Mundo, Itália, China, África Subsaariana sem folha prateada, Batata-doce Mediterrâneo / Ásia Menor / África e Uganda. Os begomovírus são o maior grupo de vírus transmitidos por B. tabaci e causam as principais doenças de culturas, como a doença do cacho do tomate e da pimenta-malagueta, doença do mosaico da mandioca, doença do mosaico amarelo de leguminosas e doença do enrolamento da folha do algodão. O principal objetivo do presente estudo é inculpar conhecimento sobre a diversidade genética da mosca-branca em campos de algodão em todo o Paquistão por meio da análise da sequência parcial de DNA do gene mitocondrial Citocromo Oxidase I (mtCO1).

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 161-166, 2023.
Article in Chinese | WPRIM | ID: wpr-953936

ABSTRACT

ObjectiveTo clone coumarate-3-hydroxylase gene (C3H) from Angelica sinensis, and analyze the correlation between its bioinformatics, expression patterns and content of ferulic acid, and to explore the functions of ASC3H. MethodReal-time polymerase chain reaction (Real-time PCR) was used to clone the full-length cDNA of ASC3H based on the transcriptome dataset of A. sinensis, and the bioinformatics analysis of the gene sequence was carried out. Real-time PCR and high performance liquid chromatography (HPLC) were used to determine relative expression of ASC3H and content of ferulic acid in different root tissues of A. sinensis (periderm, cortex and stele). ResultThe open reading frame (ORF) of ASC3H (GenBank accession number: MN2550298) was 1 530 bp, encoding 509 amino acids, with a theoretical molecular weight of 57.86 kDa and an isoelectric point of 8.36. It was a hydrophilic protein that was located in the chloroplast with multiple phosphorylation sites and a transmembrane region, and contained a conserved domain CGYDWPKGYGPIINVW_P450 (383-399 aa) in cytochrome P450. Multiple amino acid sequence alignment analysis showed that ASC3H had high similarity with C3H from other plants, especially Ammi majus in Umbelliferae. The Real-time PCR revealed that ASC3H had different expressions in periderm, cortex and stele tissues of A. sinensis roots. It was found from HPLC that the cortex tissues had the highest content of ferulic acid, and the stele tissues had the lowest. ConclusionASC3H was successfully cloned from A. sinensis, and its sequence characteristics were understood more clearly, suggesting that ASC3H might be involved in the ferulic acid biosynthesis pathway of A. sinensis. This paper provided a basis for further studying the functions of the gene and exploring the biosynthesis and regulation mechanism of ferulic acid in A. sinensis, while laying the foundation for the genetic improvement of A. sinensis.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 144-152, 2023.
Article in Chinese | WPRIM | ID: wpr-953934

ABSTRACT

ObjectiveTo clone squalene epoxidase (SE), a potential key rate-limiting enzyme involved in the synthesis pathway of Poria cocos triterpenes, from P. cocos and analyze for bioinformatics and expression. MethodThe total RNA was extracted by the kit and reverse-transcribed to cDNA. Specific primers were designed, and the cDNA was used as a template for cloning the SE gene, which was analyzed for bioinformatics. The expression of P. cocos qualene epoxidase(PcSE) was examined by Real-time polymerase chain reaction(Real-time PCR) in P. coco Shenzhou No. 10, Xiangjing 28, and 5.78 strains. ResultThe full length of PcSE is 1 571 bp, containing four exons and three introns. The obtained CDS sequence is 1 413 bp, encoding 470 amino acids. This protein is a hydrophobic protein with no signal peptide structure and has two transmembrane structural domains with a FAD/NAD (P) binding domain and SE structural domain localized to the mitochondrial membrane and the plasma membrane. The homologous sequence alignment with fungi of the Poriferae family is 80.92%, and the phylogenetic tree shows that PcSE protein is most closely related to P. cocos from the US. The results of Real-time PCR showed that the PcSE was expressed in all three strains, with the highest expression in 5.78 strain, and there was no significant difference in PcSE expression among the three strains. ConclusionFor the first time, the PcSE gene was cloned and analyzed from P. cocos, providing a basis for further research on the function of PcSE and the analysis of P. cocos triterpene biosynthesis pathway.

5.
Acta Pharmaceutica Sinica ; (12): 447-453, 2023.
Article in Chinese | WPRIM | ID: wpr-965711

ABSTRACT

An open reading frame (ORF) of isopentenyl-diphosphate delta isomerase gene (FuIPI) was cloned from Fritillaria unibracteata Hsiao et K. C. Hsia. (F. unibracteata). Furthermore, the bioinformatics and functional analyses of FuIPI were performed in this study. The result showed that, the ORF of FuIPI gene was 825 bp, encoding a polypeptide of 274 amino acids in length, with a relative molecular mass of about 31 kD and a theoretical isoelectric point of 5.61. Sequence analysis showed that FuIPI contained conserved structural domains and key residues involved in the catalyzing process. The phylogenetic analysis exhibited that FuIPI was closely related to IPIs of Dendrobium officinale and Musa acuminate. Real-time PCR analysis showed that FuIPI was distributed in different tissues of F. unibracteata, but had the highest transcriptional level in leaves, followed by stems, bulbs, and flowers. Furthermore, the FuIPI protein was successfully expressed in Escherichia coli BL21(DE3). The purified FuIPI protein successfully catalyzed the conversion from isopentenyl diphosphate (IPP) to dimethylallyl pyrophosphate (DMAPP). The above results provided a theoretical basis for further investigation of the molecular role of FuIPI in the biosynthesis of alkaloids.

6.
China Journal of Chinese Materia Medica ; (24): 1851-1857, 2023.
Article in Chinese | WPRIM | ID: wpr-981403

ABSTRACT

This paper aimed to study the role of asparagine endopeptidase(AEP) gene in the biosynthesis mechanism of cyclic peptide compounds in Pseudostellaria heterophylla. The transcriptome database of P. heterophylla was systematically mined and screened, and an AEP gene, tentatively named PhAEP, was successfully cloned. The heterologous function verification by Nicotiana benthamiana showed that the expression of the gene played a role in the biosynthesis of heterophyllin A in P. heterophylla. Bioinformatics analysis showed that the cDNA of PhAEP was 1 488 bp in length, encoding 495 amino acids with a molecular weight of 54.72 kDa. The phylogenetic tree showed that the amino acid sequence encoded by PhAEP was highly similar to that of Butelase-1 in Clitoria ternatea, reaching 80%. The sequence homology and cyclase active site analysis revealed that the PhAEP enzyme may specifically hydrolyse the C-terminal Asn/Asp(Asx) site of the core peptide in the HA linear precursor peptide of P. heterophylla, thereby participating in the ring formation of the linear precursor peptide. The results of real-time quantitative polymerase chain reaction(RT-qPCR) showed that the expression level of PhAEP was the highest in fruits, followed by in roots, and the lowest in leaves. The heterophyllin A of P. heterophylla was detected in N. benthamiana that co-expressed PrePhHA and PhAEP genes instantaneously. In this study, the PhAEP gene, a key enzyme in the biosynthesis of heterophyllin A in P. heterophylla, has been successfully cloned, which lays a foundation for further analysis of the molecular mechanism of PhAEP enzyme in the biosynthesis of heterophyllin A in P. heterophylla and has important significance for the study of synthetic biology of cyclic peptide compounds in P. heterophylla.


Subject(s)
Genes, vif , Phylogeny , Plant Leaves/genetics , Peptides, Cyclic , Cloning, Molecular , Caryophyllaceae/genetics
7.
Chinese Journal of Biotechnology ; (12): 2818-2838, 2023.
Article in Chinese | WPRIM | ID: wpr-981235

ABSTRACT

Phenylalanine ammonia-lyase (PAL) is the key entry enzyme of plant phenylpropanoid pathway. It plays an important role in the biosynthesis of podophyllotoxin, an anti-tumor lignan that is currently produced from its main natural source Sinopodophyllum hexandrum (Royle) Ying. In this study, we cloned the gene ShPAL encoding phenylalanine ammonia-lyase by RT-PCR from the root of S. hexandrum ecotype inhabited in the Aba' district, Sichuan, based on its public SRA transcriptome data-package. Bioinformatics analyses showed that the ShPAL-encoded protein is composed of 711 amino acids, contains the conserved domains of PAL, and has the signature motif within the active center of aromatic ammonia-lyases. Moreover, ShPAL protein was predicted to have a secondary structure mainly composed of α-helix and random coil, a typical 'seahorse' shape monomer tertiary structure, and a homologous tetramer three-dimensional structure by Swiss-Modelling. The phylogenetic lineage analysis indicated ShPAL was of the highest sequence identity and the shortest evolutionary distance with the PAL of Epimedium sagittatum from the same Berberidaceae family. Subcellular localization experiments showed that ShPAL protein was mainly distributed in the cytoplasm, despite of a minority on the endoplasmic reticulum membrane. Furthermore, ShPAL protein was recombinantly expressed in Escherichia coli and purified by histidine-tag affinity chromatography. Its enzymatic activity was determined up to 20.91 U/mg, with the optimum temperature of 41 ℃ and pH of 9.0. In contrast, the enzyme activity of its F130H mutant decreased by about 23.6%, yet with the same trends of change with temperature and pH, confirming that phenylalanine at this position does affect the substrate specificity of PAL. Both the wild type and the mutant have relatively poor thermostability, but good pH-stability. These results may help to further investigate the regulatory role of PAL in the process of podophyllotoxin biosynthesis and advance the heterologous synthesis of podophyllotoxin to protect the germplasm resource of S. hexandrum. They also demonstrate that ShPAL has a potential application in biochemical industry and biomedicine.


Subject(s)
Phenylalanine Ammonia-Lyase/metabolism , Podophyllotoxin , Phylogeny , Cloning, Molecular
8.
Chinese Journal of Biotechnology ; (12): 2695-2705, 2023.
Article in Chinese | WPRIM | ID: wpr-981226

ABSTRACT

The aim of this study was to clone the goat RPL29 gene and analyze its effect on lipogenesis in intramuscular adipocytes. Using Jianzhou big-eared goats as the object, the goat RPL29 gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR), the gene structure and expressed protein sequence were analyzed by bioinformatics, and the mRNA expression levels of RPL29 in various tissues and different differentiation stages of intramuscular adipocytes of goats were detected by quantitative real-time PCR (qRT-PCR). The RPL29 overexpression vector pEGFP-N1-RPL29 constructed by gene recombination was used to transfect into goat intramuscular preadipocytes and induce differentiation. Subsequently, the effect of overexpression of RPL29 on fat droplet accumulation was revealed morphologically by oil red O and Bodipy staining, and changes in the expression levels of genes related to lipid metabolism were detected by qRT-PCR. The results showed that the length of the goat RPL29 was 507 bp, including a coding sequence (CDS) region of 471 bp which encodes 156 amino acid residues. It is a positively charged and stable hydrophilic protein mainly distributed in the nucleus of cells. Tissue expression profiling showed that the expression level of this gene was much higher in subcutaneous adipose tissue and inter-abdominal adipose tissue of goats than in other tissues (P < 0.05). The temporal expression profile showed that the gene was expressed at the highest level at 84 h of differentiation in goat intramuscular adipocytes, which was highly significantly higher than that in the undifferentiated period (P < 0.01). Overexpression of RPL29 promoted lipid accumulation in intramuscular adipocytes, and the optical density values of oil red O staining were significantly increased (P < 0.05). In addition, overexpression of RPL29 was followed by a highly significant increase in ATGL and ACC gene expression (P < 0.01) and a significant increase in FASN gene expression (P < 0.05). In conclusion, the goat RPL29 may promote intra-muscular adipocyte deposition in goats by up-regulating FASN, ACC and ATGL.


Subject(s)
Animals , Lipogenesis/genetics , Adipogenesis/genetics , Goats/genetics , Adipocytes , Cell Differentiation/genetics , Sequence Analysis , Cloning, Molecular
9.
Chinese Journal of Biotechnology ; (12): 1696-1709, 2023.
Article in Chinese | WPRIM | ID: wpr-981164

ABSTRACT

The purpose of this study was to clone and characterize the ZFP36L1 (zinc finger protein 36-like 1) gene, clarify its expression characteristics, and elucidate its expression patterns in different tissues of goats. Samples of 15 tissues from Jianzhou big-eared goats, including heart, liver, spleen, lung and kidney were collected. Goat ZFP36L1 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR), then the gene and protein sequence were analyzed by online tools. Quantitative real-time polymerase chain reaction (qPCR) was used to detect the expression level of ZFP36L1 in intramuscular preadipocytes in different tissues and adipocytes of goat at different differentiation stages. The results showed that the length of ZFR36L1 gene was 1 224 bp, and the coding sequence (CDS) region was 1 017 bp, encoding 338 amino acids, which was a non-secretory unstable protein mainly located in nucleus and cytoplasm. Tissue expression profile showed that ZFP36L1 gene was expressed in all selected tissues. In visceral tissues, the small intestine showed the highest expression level (P < 0.01). In muscle tissue, the highest expression level was presented in longissimus dorsi muscle (P < 0.01), whereas the expression level in subcutaneous adipose tissue was significantly higher than that in other tissues (P < 0.01). The results of induced differentiation showed that the expression of this gene was up-regulated during adipogenic differentiation of intramuscular precursor adipocytes (P < 0.01). These data may help to clarify the biological function of the ZFP36L1 gene in goat.


Subject(s)
Animals , Goats/genetics , Amino Acid Sequence , Liver , Cloning, Molecular
10.
Chinese Herbal Medicines ; (4): 291-297, 2023.
Article in English | WPRIM | ID: wpr-982496

ABSTRACT

OBJECTIVE@#Flavonoids are the bioactive compounds in safflower (Carthamus tinctorius), in which chalcone synthase (CHS) is the first limiting enzyme. However, it is unclear that which chalcone synthase genes (CHSs) are participated in flavonoids biosynthesis in C. tinctorius. In this study, the CHSs in the molecular characterization and enzyme activities were investigated.@*METHODS@#Putative chalcone biosynthase genes were screened by the full-length transcriptome sequences data in C. tinctorius. Chalcone biosynthase genes in C. tinctorius (CtCHSs) were cloned from cDNA of flowers of C. tinctorius. The cloned gene sequences were analyzed by bioinformatics, and their expression patterns were analyzed by real-time PCR (RT-PCR). The protein of CtCHS in the development of flowers was detected by polyclonal antibody Western blot. A recombinant vector of CtCHS was constructed. The CtCHS recombinant protein was induced and purified to detect the enzyme reaction (catalyzing the reaction of p-coumaryl-CoA and malonyl-CoA to produce naringin chalcone). The reaction product was detected by HPLC and LC-MS.@*RESULTS@#Two full-length CtCHS genes were successfully cloned from the flowers of safflower (CtCHS1 and CtCHS3), with gene lengths of 1525 bp and 1358 bp, respectively. RT-PCR analysis showed that both genes were highly expressed in the flowers, but the expression of CtCHS1 was higher than that of CtCHS3 at each developmental stage of the flowers. WB analysis showed that only CtCHS1 protein could be detected at each developmental stage of the flowers. HPLC and LC-MS analyses showed that CtCHS1 could catalyze the conversion of p-coumaryl-CoA and malonyl-CoA substrates to naringin chalcone.@*CONCLUSION@#CtCHS1 is involved in the biosynthesis of naringin chalcone in safflower.

11.
Chinese Journal of Biotechnology ; (12): 653-669, 2023.
Article in Chinese | WPRIM | ID: wpr-970398

ABSTRACT

Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and β-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.


Subject(s)
Arabidopsis/metabolism , Rhododendron/metabolism , Amino Acid Sequence , Anthocyanins/metabolism , Phylogeny , Flavonoids/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins/metabolism
12.
Acta Pharmaceutica Sinica ; (12): 1059-1068, 2023.
Article in Chinese | WPRIM | ID: wpr-978746

ABSTRACT

1-Deoxy-D-xylulose-5-phosphate synthase (DXS), the first key enzyme in 2-methyl-D-erythritol-4-phosphate (MEP) pathway, catalyzes the condensation of glyceraldehyde-3-phosphate with pyruvate to 1-deoxy-xylose-5-phosphate (DXP). In this study, PgDXS1, PgDXS2, and PgDXS3 genes were cloned from the root of Platycodon grandiflorum (P. grandiflorum). The open reading frame (ORF) of PgDXS1, PgDXS2, and PgDXS3 were 2 160, 2 208, and 2 151 bp in full length, encoding 719, 735, and 716 amino acids, respectively. Homologous alignment results showed a high identity of PgDXSs with DXS in Hevea brasiliensis, Datura stramonium and Stevia rebaudiana. The recombinant expression plasmids of pET-28a-PgDXSs were constructed and transformed into Escherichia coli (E. coli) BL21 (DE3) cells, and the induced proteins were successfully expressed. Subcellular localization results showed that PgDXS1 and PgDXS2 were mainly located in chloroplasts, and PgDXS3 was located in chloroplasts, nucleus and cytoplasm. The expression of three DXS genes in different tissues of two producing areas of P. grandiflorum were assayed via real-time fluorescence quantitative PCR, and the results showed that all of them were highly expressed in leaves of P. grandiflorum from Taihe. Under methyl jasmonate (MeJA) treatment, the expression levels of three PgDXS genes showed a trend of first decreasing and then increasing at different time points (3 - 48 h), and the activity of DXS showed a trend of first increasing and then decreasing in three tissues of P. grandiflorum. This study provides a reference for further elucidating the biological function of PgDXS in terpenoid synthesis pathway in P. grandiflorum.

13.
Acta Pharmaceutica Sinica ; (12): 3449-3460, 2023.
Article in Chinese | WPRIM | ID: wpr-999090

ABSTRACT

Anthocyanidin reductase (ANR) is one of the key enzyme in the flavonoid biosynthetic pathway, and its catalytic activity is important for the synthesis of plant anthocyanin. In this study, specific primers were designed according to the transcriptome data of Lonicera japonica Thunb., and the CDS, gDNA and promoter sequences of ANR genes from Lonicera japonica Thunb. and Lonicera japonica Thunb. var. chinensis (Wats.) Bak. were cloned. The results showed that the CDS sequences of LjANR and rLjANR were 1 002 bp, the gDNA sequences were 2 017 and 2 026 bp respectively, and the promoter sequences were 1 170 and 1 164 bp respectively. LjANR and rLjANR both contain 6 exons and 5 introns, which have the same length of exons and large differences in introns. The promoter sequences both contain a large number of light response, hormone response and abiotic stress response elements. Bioinformatics analysis showed that both LjANR and rLjANR encoded 333 amino acids and were predicted to be stable hydrophobic proteins without transmembrane segments and signal peptides. The secondary structures of LjANR and rLjANR were predicted to be mainly consisted of α-helix and random coil. Sequence alignment and phylogenetic analysis showed that LjANR and rLjANR had high homology with Actinidia chinensis var. chinensis, Camellia sinensis and Camellia oleifera, and were closely related to them. The expression levels of LjANR and rLjANR were the highest in flower buds and the lowest in roots. The expression patterns at different flowering stages were similar, with higher expression levels in S1 and S2 stages and then gradually decreased until reaching the lowest level in S4 stage, after a slow increase in S5 stage, the expression levels decreased again. The expression levels of ANR genes in the two varieties showed significant differences in roots, S2 and S5 stages, while the differences in stems, flower buds, S1, S3 and S6 stages were extremely significant. The prokaryotic expression vector pET-32a-LjANR was constructed for protein expression. The target protein was successfully expressed of about 59 kD. This study lays a foundation for further study on the function of ANR gene and provides theoretical guidance for breeding new varieties of Lonicera japonica Thunb.

14.
Acta med. peru ; 39(3)jul. 2022.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1419900

ABSTRACT

La craneosinostosis sagital es el cierre prematuro de la sutura sagital, ocasionando alteraciones funcionales y estructurales. El tratamiento es quirúrgico, y actualmente se cuenta con diversas técnicas, las cuales requieren de una planificación y entrenamiento para lograr óptimos resultados. Se presenta el caso de un varón de 1 año presenta crecimiento anteroposterior anormal del cráneo, indicándose tomografía cerebral sin contraste evidenciando una sinostosis sagital. Se realiza la planificación quirúrgica de la técnica a desarrollar mediante modelo 3D personalizado a escala real. Paciente cursa con buena evolución y es dado de alta. Finalmente, la tecnología de clonación 3D esencial para la educación y desarrollo neuroquirúrgico permitiendo acceder a modelos táctiles de alta precisión y bajo costo que mejoran la calidad del manejo de craneosinostosis.


Sagittal craniosynostosis is the premature closure of the sagittal suture, causing functional and structural alterations. The treatment is surgical, and there are currently various techniques, which require planning and training to achieve optimal results. We present the case of a 1-year-old male with abnormal anteroposterior growth of the skull, indicating brain tomography without contrast, showing sagittal synostosis. Surgical planning of the technique to be developed is carried out using a real-scale personalized 3D model. The patient progresses well and is discharged. Finally, essential 3D cloning technology for neurosurgical education and development allows access to high-precision, low-cost tactile models that improve the quality of craniosynostosis management.

15.
Indian J Biochem Biophys ; 2022 Mar; 59(3): 320-330
Article | IMSEAR | ID: sea-221503

ABSTRACT

Phytohormones play critical roles in plant growth and development. Brassinosteroids (BRs) are essential group of phytohormones required for optimum growth of plants and their deficiency causes distinctive dwarf phenotypes in plants. Homeostasis of BRs in plants is maintained by DWARF4 enzyme that mediates multiple 22?-hydroxylation steps in brassinosteroid biosynthesis. Arabidopsis plants over-expressing DWARF4 show increase in inflorescence, number of branches and siliques; thereby increased number of seeds/plant. This suggests that engineering DWARF4 biosynthesis in Brassica plant can be strategized to enhance yield in mustard. In the present study (i) we cloned dwarf4 gene from Arabidopsis using gene specific PCR strategy, (ii) elucidated the three-dimensional structure of DWARF4 protein at molecular level where it revealed presence of four beta sheets and 20 alpha-helices, and (iii) transformed mustard cultivar Pusa Jaikisan with an objective to develop transgenic mustard with enhanced number of siliques. We obtained several putative transgenics with an average transformation efficiency of 3.3%. Molecular characterization with nptII specific primers confirmed presence of transgene in six putative transgenic plants.

16.
Braz. j. biol ; 82: e239449, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1249271

ABSTRACT

Alpha amylase, catalyzing the hydrolysis of starch is a ubiquitous enzyme with tremendous industrial applications. A 1698 bp gene coding for 565 amino acid amylase was PCR amplified from Geobacillus thermodenitrificans DSM465, cloned in pET21a (+) plasmid, expressed in BL21 (DE3) strain of E. coli and characterized. The recombinant enzyme exhibited molecular weight of 63 kDa, optimum pH 8, optimum temperature 70°C, and KM value of 157.7µM. On pilot scale, the purified enzyme efficiently removed up to 95% starch from the cotton fabric indicating its desizing ability at high temperature. 3D model of enzyme built by Raptor-X and validated by Ramachandran plot appeared as a monomer having 31% α-helices, 15% ß-sheets, and 52% loops. Docking studies have shown the best binding affinity of enzyme with amylopectin (∆G -10.59). According to our results, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276, and Arg175 constitute the potential active site of enzyme.


A alfa-amilase, que catalisa a hidrólise do amido, é uma enzima ubíqua com imensas aplicações industriais. Um gene de 1698 pb que codifica a amilase de 565 aminoácidos foi amplificado por PCR, a partir de Geobacillus thermodenitrificans DSM-465, clonado no plasmídeo pET21a (+), expresso na cepa BL21 (DE3) de E. coli e caracterizado. A enzima recombinante exibiu peso molecular de 63 kDa, pH ótimo igual a 8, temperatura ótima de 70° C e valor KM de 157,7 µM. Em escala piloto, a enzima purificada removeu com eficiência até 95% de amido do tecido de algodão, indicando sua capacidade de desengomagem em alta temperatura. O modelo 3D da enzima construída por Raptor-X e validada por Ramachandran plot apareceu como um monômero com 31% de hélices alfa, 15% de folhas beta e 52% de loops. Os estudos de docking mostraram melhor afinidade de ligação da enzima com amilopectina (∆G: - 10,59). De acordo com nossos resultados, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276 e Arg175 constituem o sítio ativo potencial da enzima.


Subject(s)
Escherichia coli/genetics , alpha-Amylases/genetics , alpha-Amylases/metabolism , Temperature , Enzyme Stability , Cloning, Molecular , Geobacillus , Hydrogen-Ion Concentration
17.
Braz. j. biol ; 82: e244735, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1249280

ABSTRACT

L-Asparaginase catalysing the breakdown of L-Asparagine to L-Aspartate and ammonia is an enzyme of therapeutic importance in the treatment of cancer, especially the lymphomas and leukaemia. The present study describes the recombinant production, properties and anticancer potential of enzyme from a hyperthermophilic archaeon Pyrococcus abyssi. There are two genes coding for asparaginase in the genome of this organism. A 918 bp gene encoding 305 amino acids was PCR amplified and cloned in BL21 (DE3) strain of E. coli using pET28a (+) plasmid. The production of recombinant enzyme was induced under 0.5mM IPTG, purified by selective heat denaturation and ion exchange chromatography. Purified enzyme was analyzed for kinetics, in silico structure and anticancer properties. The recombinant enzyme has shown a molecular weight of 33 kDa, specific activity of 1175 U/mg, KM value 2.05mM, optimum temperature and pH 80°C and 8 respectively. No detectable enzyme activity found when L-Glutamine was used as the substrate. In silico studies have shown that the enzyme exists as a homodimer having Arg11, Ala87, Thr110, His112, Gln142, Leu172, and Lys232 being the putative active site residues. The free energy change calculated by molecular docking studies of enzyme and substrate was found as ∆G ­ 4.5 kJ/mole indicating the affinity of enzyme with the substrate. IC50 values of 5U/mL to 7.5U/mL were determined for FB, caco2 cells and HepG2 cells. A calculated amount of enzyme (5U/mL) exhibited 78% to 55% growth inhibition of caco2 and HepG2 cells. In conclusion, the recombinant enzyme produced and characterized in the present study offers a good candidate for the treatment of cancer. The procedures adopted in the present study can be prolonged for in vivo studies.


A L-asparaginase, que catalisa a degradação da L-asparagina em L-aspartato e amônia, é uma enzima de importância terapêutica no tratamento do câncer, especialmente dos linfomas e da leucemia. O presente estudo descreve a produção recombinante, propriedades e potencial anticancerígeno da enzima de Pyrococcus abyssi, um archaeon hipertermofílico. Existem dois genes que codificam para a asparaginase no genoma desse organismo. Um gene de 918 bp, que codifica 305 aminoácidos, foi amplificado por PCR e clonado na cepa BL21 (DE3) de E. coli usando o plasmídeo pET28a (+). A produção da enzima recombinante foi induzida sob 0,5mM de IPTG, purificada por desnaturação seletiva por calor e cromatografia de troca iônica. A enzima purificada foi analisada quanto à cinética, estrutura in silico e propriedades anticancerígenas. A enzima recombinante apresentou peso molecular de 33 kDa, atividade específica de 1.175 U / mg, valor de KM 2,05 mM, temperatura ótima de 80º C e pH 8. Nenhuma atividade enzimática detectável foi encontrada quando a L-glutamina foi usada como substrato. Estudos in silico mostraram que a enzima existe como um homodímero, com Arg11, Ala87, Thr110, His112, Gln142, Leu172 e Lys232 sendo os resíduos do local ativo putativo. A mudança de energia livre calculada por estudos de docking molecular da enzima e do substrato foi encontrada como ∆G ­ 4,5 kJ / mol, indicando a afinidade da enzima com o substrato. Valores de IC50 de 5U / mL a 7,5U / mL foram determinados para células FB, células caco2 e células HepG2. Uma quantidade de enzima (5U / mL) apresentou inibição de crescimento de 78% a 55% das células caco2 e HepG2, respectivamente. Em conclusão, a enzima recombinante produzida e caracterizada no presente estudo é uma boa possibilidade para o tratamento do câncer. Os procedimentos adotados na presente pesquisa podem ser aplicados para estudos in vivo.


Subject(s)
Humans , Asparaginase/biosynthesis , Asparaginase/pharmacology , Pyrococcus abyssi/enzymology , Antineoplastic Agents/pharmacology , Substrate Specificity , Enzyme Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/pharmacology , Caco-2 Cells , Escherichia coli/genetics , Molecular Docking Simulation , Hydrogen-Ion Concentration
18.
Braz. j. biol ; 82: 1-10, 2022. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468498

ABSTRACT

Alpha amylase, catalyzing the hydrolysis of starch is a ubiquitous enzyme with tremendous industrial applications. A 1698 bp gene coding for 565 amino acid amylase was PCR amplified from Geobacillus thermodenitrificans DSM-465, cloned in pET21a (+) plasmid, expressed in BL21 (DE3) strain of E. coli and characterized. The recombinant enzyme exhibited molecular weight of 63 kDa, optimum pH 8, optimum temperature 70°C, and KM value of 157.7µM. On pilot scale, the purified enzyme efficiently removed up to 95% starch from the cotton fabric indicating its desizing ability at high temperature. 3D model of enzyme built by Raptor-X and validated by Ramachandran plot appeared as a monomer having 31% α-helices, 15% β-sheets, and 52% loops. Docking studies have shown the best binding affinity of enzyme with amylopectin (∆G -10.59). According to our results, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276, and Arg175 constitute the potential active site of enzyme.


A alfa-amilase, que catalisa a hidrólise do amido, é uma enzima ubíqua com imensas aplicações industriais. Um gene de 1698 pb que codifica a amilase de 565 aminoácidos foi amplificado por PCR, a partir de Geobacillus thermodenitrificans DSM-465, clonado no plasmídeo pET21a (+), expresso na cepa BL21 (DE3) de E. coli e caracterizado. A enzima recombinante exibiu peso molecular de 63 kDa, pH ótimo igual a 8, temperatura ótima de 70° C e valor KM de 157,7 µM. Em escala piloto, a enzima purificada removeu com eficiência até 95% de amido do tecido de algodão, indicando sua capacidade de desengomagem em alta temperatura. O modelo 3D da enzima construída por Raptor-X e validada por Ramachandran plot apareceu como um monômero com 31% de hélices alfa, 15% de folhas beta e 52% de loops. Os estudos de docking mostraram melhor afinidade de ligação da enzima com amilopectina (∆G: - 10,59). De acordo com nossos resultados, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276 e Arg175 constituem o sítio ativo potencial da enzima.


Subject(s)
Escherichia coli/genetics , Geobacillus , Genetic Vectors , alpha-Amylases/genetics
19.
Braz. j. biol ; 82: 1-9, 2022. ilus, graf, tab
Article in English | LILACS, VETINDEX | ID: biblio-1468507

ABSTRACT

L-Asparaginase catalysing the breakdown of L-Asparagine to L-Aspartate and ammonia is an enzyme of therapeutic importance in the treatment of cancer, especially the lymphomas and leukaemia. The present study describes the recombinant production, properties and anticancer potential of enzyme from a hyperthermophilic archaeon Pyrococcus abyssi. There are two genes coding for asparaginase in the genome of this organism. A 918 bp gene encoding 305 amino acids was PCR amplified and cloned in BL21 (DE3) strain of E. coli using pET28a (+) plasmid. The production of recombinant enzyme was induced under 0.5mM IPTG, purified by selective heat denaturation and ion exchange chromatography. Purified enzyme was analyzed for kinetics, in silico structure and anticancer properties. The recombinant enzyme has shown a molecular weight of 33 kDa, specific activity of 1175 U/mg, KM value 2.05mM, optimum temperature and pH 80°C and 8 respectively. No detectable enzyme activity found when L-Glutamine was used as the substrate. In silico studies have shown that the enzyme exists as a homodimer having Arg11, Ala87, Thr110, His112, Gln142, Leu172, and Lys232 being the putative active site residues. The free energy change calculated by molecular docking studies of enzyme and substrate was found as ∆G – 4.5 kJ/mole indicating the affinity of enzyme with the substrate. IC50 values of 5U/mL to 7.5U/mL were determined for FB, caco2 cells and HepG2 cells. A calculated amount of enzyme (5U/mL) exhibited 78% to 55% growth inhibition of caco2 and HepG2 cells. In conclusion, the recombinant enzyme produced and characterized in the present study offers a good candidate for the treatment of cancer. The procedures adopted in the present study can be prolonged for in vivo studies.


A L-asparaginase, que catalisa a degradação da L-asparagina em L-aspartato e amônia, é uma enzima de importância terapêutica no tratamento do câncer, especialmente dos linfomas e da leucemia. O presente estudo descreve a produção recombinante, propriedades e potencial anticancerígeno da enzima de Pyrococcus abyssi, um archaeon hipertermofílico. Existem dois genes que codificam para a asparaginase no genoma desse organismo. Um gene de 918 bp, que codifica 305 aminoácidos, foi amplificado por PCR e clonado na cepa BL21 (DE3) de E. coli usando o plasmídeo pET28a (+). A produção da enzima recombinante foi induzida sob 0,5mM de IPTG, purificada por desnaturação seletiva por calor e cromatografia de troca iônica. A enzima purificada foi analisada quanto à cinética, estrutura in silico e propriedades anticancerígenas. A enzima recombinante apresentou peso molecular de 33 kDa, atividade específica de 1.175 U / mg, valor de KM 2,05 mM, temperatura ótima de 80º C e pH 8. Nenhuma atividade enzimática detectável foi encontrada quando a L-glutamina foi usada como substrato. Estudos in silico mostraram que a enzima existe como um homodímero, com Arg11, Ala87, Thr110, His112, Gln142, Leu172 e Lys232 sendo os resíduos do local ativo putativo. A mudança de energia livre calculada por estudos de docking molecular da enzima e do substrato foi encontrada como ∆G – 4,5 kJ / mol, indicando a afinidade da enzima com o substrato. Valores de IC50 de 5U / mL a 7,5U / mL foram determinados para células FB, células caco2 e células HepG2. Uma quantidade de enzima (5U / mL) apresentou inibição de crescimento de 78% a 55% das células caco2 e HepG2, respectivamente. Em conclusão, a enzima recombinante produzida e caracterizada no presente estudo é uma boa possibilidade para o tratamento do câncer. Os procedimentos adotados na presente pesquisa podem ser aplicados para estudos in vivo.


Subject(s)
Anticarcinogenic Agents/analysis , Asparaginase/genetics , Leukemia/drug therapy , Lymphoma/drug therapy , Pyrococcus abyssi/enzymology
20.
Braz. j. biol ; 822022.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468685

ABSTRACT

Abstract Alpha amylase, catalyzing the hydrolysis of starch is a ubiquitous enzyme with tremendous industrial applications. A 1698 bp gene coding for 565 amino acid amylase was PCR amplified from Geobacillus thermodenitrificans DSM-465, cloned in pET21a (+) plasmid, expressed in BL21 (DE3) strain of E. coli and characterized. The recombinant enzyme exhibited molecular weight of 63 kDa, optimum pH 8, optimum temperature 70°C, and KM value of 157.7µM. On pilot scale, the purified enzyme efficiently removed up to 95% starch from the cotton fabric indicating its desizing ability at high temperature. 3D model of enzyme built by Raptor-X and validated by Ramachandran plot appeared as a monomer having 31% -helices, 15% -sheets, and 52% loops. Docking studies have shown the best binding affinity of enzyme with amylopectin (G -10.59). According to our results, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276, and Arg175 constitute the potential active site of enzyme.


Resumo A alfa-amilase, que catalisa a hidrólise do amido, é uma enzima ubíqua com imensas aplicações industriais. Um gene de 1698 pb que codifica a amilase de 565 aminoácidos foi amplificado por PCR, a partir de Geobacillus thermodenitrificans DSM-465, clonado no plasmídeo pET21a (+), expresso na cepa BL21 (DE3) de E. coli e caracterizado. A enzima recombinante exibiu peso molecular de 63 kDa, pH ótimo igual a 8, temperatura ótima de 70° C e valor KM de 157,7 µM. Em escala piloto, a enzima purificada removeu com eficiência até 95% de amido do tecido de algodão, indicando sua capacidade de desengomagem em alta temperatura. O modelo 3D da enzima construída por Raptor-X e validada por Ramachandran plot apareceu como um monômero com 31% de hélices alfa, 15% de folhas beta e 52% de loops. Os estudos de docking mostraram melhor afinidade de ligação da enzima com amilopectina (G: - 10,59). De acordo com nossos resultados, Asp 232, Glu274, Arg448, Glu385, Asp34, Asn276 e Arg175 constituem o sítio ativo potencial da enzima.

SELECTION OF CITATIONS
SEARCH DETAIL